skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zaslavskiy, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider the computation of internal solutions for a time domain plasma wave equation with unknown coefficients from the data obtained by sampling its transfer function at the boundary. The computation is performed by transforming known background snapshots using the Cholesky decomposition of the data-driven Gramian. We show that this approximation is asymptotically close to the projection of the true internal solution onto the subspace of background snapshots. This allows us to derive a generally applicable bound for the error in the approximation of internal fields from boundary data for a time domain plasma wave equation with an unknown potential $$q$$. For general $$q\in L^\infty$$, we prove convergence of these data generated internal fields in one dimension for two examples of initial waves. The first is for piecewise constant initial data and sampling $$\tau$$ equal to the pulse width. The second is piecewise linear initial data and sampling at half the pulse width. We show that in both cases the data generated solutions converge in $L^2$ at order $$\sqrt{\tau}$$. We present numerical experiments validating the result and the sharpness of this convergence rate. 
    more » « less